解数独
难度:
标签:
题目描述
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.'
表示。
示例 1:

输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]] 输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]] 解释:输入的数独如上图所示,唯一有效的解决方案如下所示:![]()
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字或者'.'
- 题目数据 保证 输入数独仅有一个解
代码结果
运行时间: 528 ms, 内存: 15.1 MB
/*
思路:
使用Java Stream API 解决数独问题。
1. 使用Stream对板中的元素进行过滤和映射。
2. 在尝试放置每个数字时,使用Stream检查行、列和小方块的唯一性。
3. 递归地填充空位,使用Stream简化代码。
*/
import java.util.stream.IntStream;
public class Solution {
public void solveSudoku(char[][] board) {
solve(board);
}
private boolean solve(char[][] board) {
return IntStream.range(0, 81)
.mapToObj(i -> new int[] {i / 9, i % 9})
.filter(cell -> board[cell[0]][cell[1]] == '.')
.findFirst()
.map(cell -> {
int row = cell[0];
int col = cell[1];
return IntStream.range(1, 10)
.mapToObj(num -> (char) (num + '0'))
.filter(num -> isValid(board, row, col, num))
.anyMatch(num -> {
board[row][col] = num;
if (solve(board)) return true;
board[row][col] = '.';
return false;
});
}).orElse(true);
}
private boolean isValid(char[][] board, int row, int col, char num) {
return IntStream.range(0, 9).noneMatch(i -> board[row][i] == num || board[i][col] == num || board[row / 3 * 3 + i / 3][col / 3 * 3 + i % 3] == num);
}
}
解释
方法:
这个题解使用回溯法来解决数独问题。回溯法是一种通用的算法思路,适合由多个步骤组成的问题,并且每个步骤都有多个选项。通过尝试每一个选项,可以一步步构建问题的解,当某个步骤无法满足要求时,就回溯到上一个步骤,尝试其他选项。对于数独问题,从第一行第一列开始,尝试填入数字1-9。对于每个空格,先判断当前数字是否合法,如果合法就填入,然后递归地去填下一个空格,直到填完整个数独。如果中途发现无解,就回溯到上一个空格,尝试其他数字。
时间复杂度:
O(9^(n^2))
空间复杂度:
O(n^2)
代码细节讲解
🦆
为什么选择使用回溯法解决数独问题,而不是其他算法如动态规划或贪心算法?
▷🦆
在递归回溯时,是否有办法减少重复验证同一行或同一列已被排除的数字,以优化性能?
▷🦆
如何确定在递归函数`backtrack`中已经找到了数独的唯一解,有什么特定的标志或条件?
▷🦆
代码中的`valid`函数在判断数字合法性时为什么要分别检查行、列以及3x3宫,这三者的检查是否存在重叠的可能性?
▷相关问题
有效的数独
请你判断一个 9 x 9
的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
注意:
- 一个有效的数独(部分已被填充)不一定是可解的。
- 只需要根据以上规则,验证已经填入的数字是否有效即可。
- 空白格用
'.'
表示。
示例 1:

输入:board = [["5","3",".",".","7",".",".",".","."] ,["6",".",".","1","9","5",".",".","."] ,[".","9","8",".",".",".",".","6","."] ,["8",".",".",".","6",".",".",".","3"] ,["4",".",".","8",".","3",".",".","1"] ,["7",".",".",".","2",".",".",".","6"] ,[".","6",".",".",".",".","2","8","."] ,[".",".",".","4","1","9",".",".","5"] ,[".",".",".",".","8",".",".","7","9"]] 输出:true
示例 2:
输入:board = [["8","3",".",".","7",".",".",".","."] ,["6",".",".","1","9","5",".",".","."] ,[".","9","8",".",".",".",".","6","."] ,["8",".",".",".","6",".",".",".","3"] ,["4",".",".","8",".","3",".",".","1"] ,["7",".",".",".","2",".",".",".","6"] ,[".","6",".",".",".",".","2","8","."] ,[".",".",".","4","1","9",".",".","5"] ,[".",".",".",".","8",".",".","7","9"]] 输出:false 解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字(1-9
)或者'.'
不同路径 III
在二维网格 grid
上,有 4 种类型的方格:
1
表示起始方格。且只有一个起始方格。2
表示结束方格,且只有一个结束方格。0
表示我们可以走过的空方格。-1
表示我们无法跨越的障碍。
返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目。
每一个无障碍方格都要通过一次,但是一条路径中不能重复通过同一个方格。
示例 1:
输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]] 输出:2 解释:我们有以下两条路径: 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2) 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
示例 2:
输入:[[1,0,0,0],[0,0,0,0],[0,0,0,2]] 输出:4 解释:我们有以下四条路径: 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3) 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3) 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3) 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
示例 3:
输入:[[0,1],[2,0]] 输出:0 解释: 没有一条路能完全穿过每一个空的方格一次。 请注意,起始和结束方格可以位于网格中的任意位置。
提示:
1 <= grid.length * grid[0].length <= 20