位1的个数
难度:
标签:
题目描述
编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 '1' 的个数(也被称为汉明重量)。
提示:
- 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
- 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在 示例 3 中,输入表示有符号整数
-3
。
示例 1:
输入:n = 00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。
示例 2:
输入:n = 00000000000000000000000010000000 输出:1 解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。
示例 3:
输入:n = 11111111111111111111111111111101 输出:31 解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。
提示:
- 输入必须是长度为
32
的 二进制串 。
进阶:
- 如果多次调用这个函数,你将如何优化你的算法?
代码结果
运行时间: 18 ms, 内存: 16.0 MB
// 思路:将整数转换为二进制字符串,然后使用stream来过滤并计数'1'的个数
import java.util.stream.*;
public class Solution {
// Function to count number of 1 bits (Hamming Weight) using Streams
public int hammingWeight(int n) {
return Integer.toBinaryString(n)
.chars() // Get IntStream from the string
.filter(ch -> ch == '1') // Filter '1' characters
.count(); // Count the number of '1's
}
}
解释
方法:
时间复杂度:
空间复杂度:
代码细节讲解
相关问题
颠倒二进制位
颠倒给定的 32 位无符号整数的二进制位。
提示:
- 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
- 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在 示例 2 中,输入表示有符号整数
-3
,输出表示有符号整数-1073741825
。
示例 1:
输入:n = 00000010100101000001111010011100 输出:964176192 (00111001011110000010100101000000) 解释:输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596, 因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。
示例 2:
输入:n = 11111111111111111111111111111101 输出:3221225471 (10111111111111111111111111111111) 解释:输入的二进制串 11111111111111111111111111111101 表示无符号整数 4294967293, 因此返回 3221225471 其二进制表示形式为 10111111111111111111111111111111 。
提示:
- 输入是一个长度为
32
的二进制字符串
进阶: 如果多次调用这个函数,你将如何优化你的算法?
2 的幂
给你一个整数 n
,请你判断该整数是否是 2 的幂次方。如果是,返回 true
;否则,返回 false
。
如果存在一个整数 x
使得 n == 2x
,则认为 n
是 2 的幂次方。
示例 1:
输入:n = 1 输出:true 解释:20 = 1
示例 2:
输入:n = 16 输出:true 解释:24 = 16
示例 3:
输入:n = 3 输出:false
示例 4:
输入:n = 4 输出:true
示例 5:
输入:n = 5 输出:false
提示:
-231 <= n <= 231 - 1
进阶:你能够不使用循环/递归解决此问题吗?
比特位计数
给你一个整数 n
,对于 0 <= i <= n
中的每个 i
,计算其二进制表示中 1
的个数 ,返回一个长度为 n + 1
的数组 ans
作为答案。
示例 1:
输入:n = 2 输出:[0,1,1] 解释: 0 --> 0 1 --> 1 2 --> 10
示例 2:
输入:n = 5 输出:[0,1,1,2,1,2] 解释: 0 --> 0 1 --> 1 2 --> 10 3 --> 11 4 --> 100 5 --> 101
提示:
0 <= n <= 105
进阶:
- 很容易就能实现时间复杂度为
O(n log n)
的解决方案,你可以在线性时间复杂度O(n)
内用一趟扫描解决此问题吗? - 你能不使用任何内置函数解决此问题吗?(如,C++ 中的
__builtin_popcount
)
二进制手表
二进制手表顶部有 4 个 LED 代表 小时(0-11),底部的 6 个 LED 代表 分钟(0-59)。每个 LED 代表一个 0 或 1,最低位在右侧。
- 例如,下面的二进制手表读取
"4:51"
。
给你一个整数 turnedOn
,表示当前亮着的 LED 的数量,返回二进制手表可以表示的所有可能时间。你可以 按任意顺序 返回答案。
小时不会以零开头:
- 例如,
"01:00"
是无效的时间,正确的写法应该是"1:00"
。
分钟必须由两位数组成,可能会以零开头:
- 例如,
"10:2"
是无效的时间,正确的写法应该是"10:02"
。
示例 1:
输入:turnedOn = 1 输出:["0:01","0:02","0:04","0:08","0:16","0:32","1:00","2:00","4:00","8:00"]
示例 2:
输入:turnedOn = 9 输出:[]
提示:
0 <= turnedOn <= 10
汉明距离
两个整数之间的 汉明距离 指的是这两个数字对应二进制位不同的位置的数目。
给你两个整数 x
和 y
,计算并返回它们之间的汉明距离。
示例 1:
输入:x = 1, y = 4 输出:2 解释: 1 (0 0 0 1) 4 (0 1 0 0) ↑ ↑ 上面的箭头指出了对应二进制位不同的位置。
示例 2:
输入:x = 3, y = 1 输出:1
提示:
0 <= x, y <= 231 - 1
交替位二进制数
给定一个正整数,检查它的二进制表示是否总是 0、1 交替出现:换句话说,就是二进制表示中相邻两位的数字永不相同。
示例 1:
输入:n = 5 输出:true 解释:5 的二进制表示是:101
示例 2:
输入:n = 7 输出:false 解释:7 的二进制表示是:111.
示例 3:
输入:n = 11 输出:false 解释:11 的二进制表示是:1011.
提示:
1 <= n <= 231 - 1
二进制表示中质数个计算置位
给你两个整数 left
和 right
,在闭区间 [left, right]
范围内,统计并返回 计算置位位数为质数 的整数个数。
计算置位位数 就是二进制表示中 1
的个数。
- 例如,
21
的二进制表示10101
有3
个计算置位。
示例 1:
输入:left = 6, right = 10 输出:4 解释: 6 -> 110 (2 个计算置位,2 是质数) 7 -> 111 (3 个计算置位,3 是质数) 9 -> 1001 (2 个计算置位,2 是质数) 10-> 1010 (2 个计算置位,2 是质数) 共计 4 个计算置位为质数的数字。
示例 2:
输入:left = 10, right = 15 输出:5 解释: 10 -> 1010 (2 个计算置位, 2 是质数) 11 -> 1011 (3 个计算置位, 3 是质数) 12 -> 1100 (2 个计算置位, 2 是质数) 13 -> 1101 (3 个计算置位, 3 是质数) 14 -> 1110 (3 个计算置位, 3 是质数) 15 -> 1111 (4 个计算置位, 4 不是质数) 共计 5 个计算置位为质数的数字。
提示:
1 <= left <= right <= 106
0 <= right - left <= 104