LRU 缓存
难度:
标签:
题目描述
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现
LRUCache
类:LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
- 最多调用
2 * 105
次get
和put
代码结果
运行时间: 196 ms, 内存: 23.4 MB
/*
* 思路:Java Stream不能直接操作类数据结构的操作。使用类似于Java代码的双向链表和HashMap实现。
*/
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
class LRUCache {
private final int capacity;
private final Map<Integer, Integer> cache;
public LRUCache(int capacity) {
this.capacity = capacity;
this.cache = new LinkedHashMap<Integer, Integer>(capacity, 0.75f, true) {
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > capacity;
}
};
}
public int get(int key) {
return cache.getOrDefault(key, -1);
}
public void put(int key, int value) {
cache.put(key, value);
}
}
解释
方法:
该题解采用哈希表和双向链表实现了一个 LRU 缓存机制。哈希表用于存储每个节点的引用,以便快速定位节点并在 O(1) 时间内完成删除或更新。双向链表用于按照访问的顺序存储节点,使得最近访问的节点总是移动到链表末尾,而最久未访问的节点位于链表头部。当缓存容量满时,链表头部的节点(即最久未访问的节点)被删除。
时间复杂度:
O(1)
空间复杂度:
O(capacity)
代码细节讲解
🦆
为什么选择双向链表而不是单向链表来实现LRU缓存的底层结构?
▷🦆
当缓存达到最大容量并且需要移除最老元素时,此时如何高效地识别并删除最久未使用的节点?
▷🦆
在put操作中,如果键已经存在于缓存中,为什么需要先删除旧的键值对再添加新的键值对,直接更新值是否可行?
▷🦆
哈希表和双向链表的结合使用中,存在哪些潜在的同步问题,尤其是在多线程环境下?
▷相关问题
LFU 缓存
请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。
实现 LFUCache
类:
LFUCache(int capacity)
- 用数据结构的容量capacity
初始化对象int get(int key)
- 如果键key
存在于缓存中,则获取键的值,否则返回-1
。void put(int key, int value)
- 如果键key
已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量capacity
时,则应该在插入新项之前,移除最不经常使用的项。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最久未使用 的键。
为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。
当一个键首次插入到缓存中时,它的使用计数器被设置为 1
(由于 put 操作)。对缓存中的键执行 get
或 put
操作,使用计数器的值将会递增。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入: ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]] 输出: [null, null, null, 1, null, -1, 3, null, -1, 3, 4] 解释: // cnt(x) = 键 x 的使用计数 // cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // 返回 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小 // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // 返回 -1(未找到) lfu.get(3); // 返回 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用 // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // 返回 -1(未找到) lfu.get(3); // 返回 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // 返回 4 // cache=[3,4], cnt(4)=2, cnt(3)=3
提示:
1 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- 最多调用
2 * 105
次get
和put
方法