二叉树的中序遍历
难度:
标签:
题目描述
给定一个二叉树的根节点 root
,返回 它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3] 输出:[1,3,2]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
提示:
- 树中节点数目在范围
[0, 100]
内 -100 <= Node.val <= 100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
代码结果
运行时间: 36 ms, 内存: 14.8 MB
/*
* 题目思路:
* 使用Java Stream进行中序遍历相对复杂,但可以通过递归生成流并合并。
* 1. 使用递归生成左子树的流。
* 2. 使用流连接当前节点的值。
* 3. 使用递归生成右子树的流。
*/
import java.util.*;
import java.util.stream.*;
public class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
return inorder(root).collect(Collectors.toList());
}
private Stream<Integer> inorder(TreeNode root) {
if (root == null) return Stream.empty();
return Stream.concat(
Stream.concat(
inorder(root.left),
Stream.of(root.val)
),
inorder(root.right)
);
}
// TreeNode定义
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
}
解释
方法:
时间复杂度:
空间复杂度:
代码细节讲解
相关问题
验证二叉搜索树
给你一个二叉树的根节点 root
,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:

输入:root = [2,1,3] 输出:true
示例 2:

输入:root = [5,1,4,null,null,3,6] 输出:false 解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
- 树中节点数目范围在
[1, 104]
内 -231 <= Node.val <= 231 - 1
二叉树的前序遍历
给你二叉树的根节点 root
,返回它节点值的 前序 遍历。
示例 1:

输入:root = [1,null,2,3] 输出:[1,2,3]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
示例 4:

输入:root = [1,2] 输出:[1,2]
示例 5:

输入:root = [1,null,2] 输出:[1,2]
提示:
- 树中节点数目在范围
[0, 100]
内 -100 <= Node.val <= 100
进阶:递归算法很简单,你可以通过迭代算法完成吗?
二叉树的后序遍历
给你一棵二叉树的根节点 root
,返回其节点值的 后序遍历 。
示例 1:

输入:root = [1,null,2,3] 输出:[3,2,1]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
提示:
- 树中节点的数目在范围
[0, 100]
内 -100 <= Node.val <= 100
进阶:递归算法很简单,你可以通过迭代算法完成吗?
二叉搜索树迭代器
BSTIterator
,表示一个按中序遍历二叉搜索树(BST)的迭代器:
BSTIterator(TreeNode root)
初始化BSTIterator
类的一个对象。BST 的根节点root
会作为构造函数的一部分给出。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。boolean hasNext()
如果向指针右侧遍历存在数字,则返回true
;否则返回false
。int next()
将指针向右移动,然后返回指针处的数字。
注意,指针初始化为一个不存在于 BST 中的数字,所以对 next()
的首次调用将返回 BST 中的最小元素。
你可以假设 next()
调用总是有效的,也就是说,当调用 next()
时,BST 的中序遍历中至少存在一个下一个数字。
示例:

输入 ["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"] [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []] 输出 [null, 3, 7, true, 9, true, 15, true, 20, false] 解释 BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); bSTIterator.next(); // 返回 3 bSTIterator.next(); // 返回 7 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 9 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 15 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 20 bSTIterator.hasNext(); // 返回 False
提示:
- 树中节点的数目在范围
[1, 105]
内 0 <= Node.val <= 106
- 最多调用
105
次hasNext
和next
操作
进阶:
- 你可以设计一个满足下述条件的解决方案吗?
next()
和hasNext()
操作均摊时间复杂度为O(1)
,并使用O(h)
内存。其中h
是树的高度。
二叉搜索树中第K小的元素
给定一个二叉搜索树的根节点 root
,和一个整数 k
,请你设计一个算法查找其中第 k
个最小元素(从 1 开始计数)。
示例 1:

输入:root = [3,1,4,null,2], k = 1 输出:1
示例 2:

输入:root = [5,3,6,2,4,null,null,1], k = 3 输出:3
提示:
- 树中的节点数为
n
。 1 <= k <= n <= 104
0 <= Node.val <= 104
进阶:如果二叉搜索树经常被修改(插入/删除操作)并且你需要频繁地查找第 k
小的值,你将如何优化算法?
二叉搜索树节点最小距离
给你一个二叉搜索树的根节点 root
,返回 树中任意两不同节点值之间的最小差值 。
差值是一个正数,其数值等于两值之差的绝对值。
示例 1:

输入:root = [4,2,6,1,3] 输出:1
示例 2:

输入:root = [1,0,48,null,null,12,49] 输出:1
提示:
- 树中节点的数目范围是
[2, 100]
0 <= Node.val <= 105
注意:本题与 530:https://leetcode-cn.com/problems/minimum-absolute-difference-in-bst/ 相同